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1. Introduction

All electrochemical reactions take place at the
interface between an electronic conductor, the elec-
trode, and an ionic conductor, the electrolyte. Since
the course of these reactions and their variation with
the electrode potential depend on the distribution of
the particles and the charges in this interfacial
region, its structure is of paramount importance for
electrochemistry and has been a topic of intensive
research since the time of Lippmann! and Helm-
holtz.? It was Helmholtz who pointed out that the
high capacity of the interface between a metal and a
concentrated electrolyte solution could be explained
by the existence of two layers of charges of equal
magnitude and opposite sign: a layer of charge on
the metal surface, which is balanced by an ionic
excess charge in the adjacent solution. This distribu-
tion of charges became known as the electric double
layer; the use of this term is generally restricted to
metal electrodes, and so is this review.

Figure 1 shows a picture of the double layer
between a single-crystal metal electrode and an
agueous electrolyte solution; this is the interface that
is studied in most of the works on which we will
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Figure 1. Schematic picture of the double layer between
a metal surface and an electrolyte solution.

report. The circles on the left denote the ion cores of
the metal. The polar solvent molecules are indicated
by circles with an arrow at their center, and the ions
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are represented by circles with charges. The metal
is assumed to carry an excess positive charge (which
is not shown) located at the surface, which is com-
pensated by an excess of anions on the solution side
of the interface. Several anions are specifically
adsorbed and, hence, in contact with the metal, while
others are separated from the metal by solvent
molecules. Double layer studies try to obtain infor-
mation on the actual distribution of the particles and
the charges, which is shown schematically here.

The development of microscopic models for the
double layer began with the works of Gouy?® and
Chapman,* who proposed a space charge theory for
the solution part of the double layer. Their theory
explains the interfacial capacity at low (i.e., less than
about 1072 M) electrolyte concentrations quantita-
tively. This success induced researchers to focus on
the structure of the solution at the interface, while
the metal continued to be treated as a perfect
conductor, whose electronic properties were disre-
garded. The period until about 1980 was marked by
the development of quite detailed models for the
distribution of ions and solvent molecules, but quan-
titative agreement with experimental data for the
interfacial capacity could only be achieved by fitting
a fair number of adjustable parameters. The strong
effect of the metal on the interfacial properties, which
is evident from the capacity—charge characteristics
discussed in section 2, could not be explained by these
models.®

A notable exception to this single-minded focus on
the solvent structure was the early work of Rice.® He
was the first to consider the spatial distribution of
the electronic charge on the metal surface in the
context of double layer theory. Using the Thomas—
Fermi model he calculated the penetration of the
electric field into the metal surface and pointed out
that the metal itself should make a contribution to
the interfacial capacity. Unfortunately, the Thomas—
Fermi theory is not well suited to describe the
properties of metal surfaces—indeed, it predicts that
the work function of any metal should be zero. It is
therefore not surprising that the work of Rice predicts
values for the interfacial capacity that are far too
small and essentially independent of the metal. For
these reasons his work was forgotten for several
decades.

Until about 1980 experimental electrochemistry
was mainly restricted to measurements of potential
and current, which give little information on the
interfacial structure. At about that time techniques
became available that can probe the electronic prop-
erties of the metal surface directly. Simultaneously,
theoreticians began to reconsider the distribution of
the electrons on the metal surface using the jellium
model, which is much better at describing surface
properties than the Thomas—Fermi theory. The first
applications of the jellium model offered immediately
a qualitative explanation why the double layer
capacity depends so strongly on the nature of the
metal. This first success spurned considerable theo-
retical activity, and the development of double layer
models by various groups of researchers. While these
models differ in details, they agree on the basic
mechanism by which the surface electrons influence
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Figure 2. Potential of zero charge of several groups of
metals versus their work function. The sp metals are
indicated by x, the work functions of the solid metals are
for polycrystalline samples; data were taken from Trasatti.”
The indium amalgams are indicated by O; these data are
from ref 11. The solid line indicates the correlation for the
sp metal including the amalgams; the dashed line is for
the silver surfaces.

the double layer capacity. In addition, they offer a
framework in which the electronic effects evidenced
by new techiques, such as second harmonic genera-
tion or electroreflectance, can be understood.

We will begin this review by looking at a few
phenomenological correlations that clearly demon-
strate the effect of the electronic properties of the
metal on the double layer. Thereafter, we will outline
the jellium model and its extensions, which form the
basis of much of our present understanding of these
effects. Then, we will review a number of modern
techniques that actually probe the electronic surface
structure, and provide illustrative examples. But
electronic effects manifest themselves not only in the
structure of the interface but also in electron transfer,
in the reactions of hot electrons, or in electron
tunneling through the double layer. Those topics will
covered before we finally discuss attempts to con-
struct complete models for the double layer.

2. Phenomenological Correlations

2.1. The Potential of Zero Charge

A metal electrode carries a charge density whose
magnitude depends on its potential. The unique
potential ¢,,c at which it carries no charge is called
the potential of zero charge (pzc). Itis a characteristic
guantity for a particular metal/solvent interface and
independent of the ions, provided there is no specific
adsorption. It is found to correlate with its work
function @ in the following form

¢pzc =o+C 1)

where the constant C depends on the scale on which
the electrode potential is measured; for the standard
hydrogen electrode (SHE) its value is approximately
4.5 eV. The correlation is somewhat rough; it be-
comes better if the metals are grouped into various
chemical classes: the sp, the sd (Cu, Ag, Au), and
the transition metals. Figure 2 shows the data for
polycrystalline sp metals, a few surfaces of single
crystal silver electrodes, and a series of indium
amalgams. We have left out the transition metals
because there are only few data for single crystals,
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but we note that the values for polycrystalline metals
do follow eq 1.7

This correlation is easily derived from a thermo-
dynamic cycle, in which the electron is transferred
from the metal first into the vacuum, then into the
solution, and then back to the metal; the details can
be found in the literature.”® As a result, the potential
of zero charge can be expressed through the work
function of the metal (labeled M) and the difference
in the outer potential between the metal and the
solution (labelled sol). (A brief reminder: the inner
potential ¢ is the electrostatic potential inside a
phase, the outer potential vy is the potential just
outside the phase. They differ by the surface poten-
tial y = ¢ — v, which is caused by an inhomogeneous
charge distribution at the surface. In polar liquids
the surface potential is due to a small net orientation
of the dipole moments at the surface; in metals it is
caused by the different distribution of the ionic and
the electronic charges. These points are discussed
at greater lengths in section 3.) On the standard
hydrogen scale

¢pzc = ((I)M - cI)ref)/eo + (UJM - wsol) (2)

where @, is the work function of the hydrogen
evolution reaction under standard conditions, which
is defined as the work required to transfer an electron
from a hydrogen molecule in the solution to a position
in the vacuum just outside the solution by the
process:

1/2 H,(solution) — H™(solution) + e~ (vacuum)

The exact value of this work function, which links
the electrochemical scale of potentials to the vacuum
scale, has been the subject of some debate.® Due to
the uncertainty in the experimental quantities that
enter into its definition, it can presently be given only
with a substantial uncertainty: ®.= (4.5 +0.2) eV.

Equation 2 already suggests a correlation of the
pzc with the work function. The last term, which has
the meaning of a contact potential, does not vanish
at the pzc, because the dipole potentials of the solvent
and of the metal change when they are brought into
contact: the interaction of the solvent with the metal
surface modifies the net orientation of the solvent
molecules. For example, water molecules tend to be
oriented with their oxygen end toward the metal, and
the electronic density of the metal is modified through
the interaction with the water. Denoting these
changes in the dipole potentials by dyss and dym we
obtain finally:

1
¢pzc = e_o(q)M - q)ref) + 5XM - 6Xsol 3)

The work function of the reference electrode is a
constant, and the dipole potential terms are small.
Therefore, the work function of the metal is the
dominant term on the right hand side, which explains
the observed correlation. The constant C in eq 1
should be close to the work function of the reference
electrode, which is indeed the case. The small
deviations from this correlation that are observed,
and the grouping into different classes, are caused
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by the dipole terms and can be used to obtain the
changes in the dipole potential on the formation of
the interface. Thus, this correlation can be under-
stood without recourse to a microscopic model. It
does not hold when the solution contains ions that
are specifically adsorbed, because adsorption changes
the dipole potential at the interface in the same way
that it changes the work function of a metal surface
in the vacuum.

Metal work functions correlate with several other
guantities, in particular with the density of surface
atoms or, equivalently, the density of broken bonds
on the surface. Therefore, the potential of zero
charge correlates with these quantities as well.1®

2.2. The Helmholtz Capacity

For a long time the models of the electric double
layer were based on the interfacial capacity, which
can be obtained with relative ease from measure-
ments of currents, potentials, and in the case of liquid
electrodes, the surface tension. The first quantitative
theory was that of Gouy and Chapman; it is equiva-
lent to the Debye—Hickel theory, which it predates
by more than a decade. Just like the latter, it models
the solution as an ensemble of point ions in a
dielectric continuum, while the metal is treated as a
perfect conductor. It is valid in the limit of low
electrolyte concentrations—for a 1—1 electrolyte up
to about 1072 M—and gives the following explicit
formula for the differential capacity per unit area

do _ €€o Zeo(¢ - ¢pzc))
C 6 Ly cosh ( KT (4)
where o is the surface charge density, Lp the Debye
length, and ¢ the dielectric constant of the solvent.
Obviously, the Gouy—Chapman capacity contains no
information on the microscopic structure of the
interface. It has a pronounced minimum at the
potential of zero charge, from which the latter can
be determined.

At higher concentrations systematic deviations
from the Gouy—Chapman theory are observed. If
there is no specific adsorption of ions the interfacial
capacity is found to obey the relation

ol

1,1
==t ©)
Coc Cn

where Cgc is the Gouy—Chapman capacity from eq
4 and Cy is called the Helmholtz capacity (it is also
known as the inner layer or the compact layer
capacity). The Helmholtz capacity is independent of
the electrolyte concentration and varies only weakly
with the nature of the ions. In practice, there is
almost always some specific adsorption of anions at
potentials above the pzc, which may lead to devia-
tions from eq 5.

The Helmholtz capacity can be determined by
measuring the capacity C at various electrolyte
concentrations and plotting 1/C versus the inverse
of the calculated Gouy—Chapman capacity (Parsons
and Zobel plot'?). In practice, the Helmholtz capacity
is close to the capacity measured at concentrations



3180 Chemical Reviews, 1996, Vol. 96, No. 8

80 T T T T T

60 T

6/uCem”

Figure 3. Helmholtz capacity as a function of the electrode
charge for mercury and Ag(111) in contact with an aqueous
solution of ions that are not specifically adsorbed.

of about 1 M since at such concentrations the Gouy—
Chapman capacity is large and its inverse small.

The Helmholtz capacity depends on the charge
density on the electrode; Figure 3 shows two such
capacity—charge characteristics. They depend
strongly on the nature of the metal and of the solvent
and thus contain the information on the microscopic
structure of the interface that is missing in the
Gouy—Chapman part. Explicit models will be dis-
cussed below; here we will briefly indicate the origins
of the Helmholtz capacity, which resides in a number
of effects that are not considered in the Gouy—
Chapman theory:

(1) Near the interface the solution possesses a
definite structure, which manifests itself as oscilla-
tions in the particle density, which in turn gives rise
to oscillations in the potential.

(2) At high electrolyte concentrations the Debye
length, and hence the spatial extension of the double
layer, is short. Therefore, the electric field can reach
extremely high values, of the order of 10°V m~2. This
leads to dielectric saturation in the layers of solvent
molecules at the interface.

(3) This high field strength distorts the electronic
density at the metal surface so that the surface
potential of the metal is changed. This effect is one
of the main topics of this review.

It was first noted by Trasatti’ that the Helmholtz
capacities of the simple sp metals, taken at the pzc,
correlate with their electronic densities (see Figure
4). There is some scattering of the data, but overall
the trend seems to hold in those solvents for which
data exist. This correlation illustrates the important
role played by the response of the surface electrons
to the electric field. Its origin will be discussed in
the next section.

3. The Electronic Density at a Metal Surface

The preceding discussion has shown that the
electronic structure of the metal surface has a
profound infuence upon the double layer properties.
This may sound trivial, but for a long time the metal
surface was regarded as a structureless perfect
conductor, and the role of the surface electrons was
only recognized recently.

Double layer theory is a very active area of re-
search. At the present time there is broad agreement
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Figure 4. Helmholtz capacity at the pzc for simple sp
metals: (a) aqueous solutions; (b) crosses (x ) and full line
demethyl sulfoxide; circles (O) and dashed line, acetonitrile.
The lines are explained in section 9.1. The electronic
density is given in atomic units (au); 1 au of density
corresponds to 6.75 x 102 cm~3.

on the type of models that should be used for the
metal and for the solution, and a number of qualita-
tive effects seem to be established. The most difficult
problem is the interaction of the metal surface with
the solution. In this point the models that have been
put forward by various groups differ considerably; all
of them are relatively simple, and a fully self-
consistent treatment is still lacking.

In this section we present models for the electronic
structure of the electrode; complete double layer
models, which include also the solvent, will be
discussed in section 9.

3.1. The Jellium Model

The biggest recent advance in double layer theory
was the introduction of the jellium model.'34 Before
this model was used in electrochemistry, it had been
used extensively in the theory of metal surfaces.'>16

A metal consists of electrons and a lattice of
positively charged ions. In the jellium model the
ionic charge is represented by a constant positive
background charge, which drops abruptly to zero at
the metal surface, whose position is also denoted as
the jellium edge. The electrons are modeled as an
inhomogeneous electron gas, which interacts with the
positive background. The quantum-mechanical self-
interactions of the electron gas—the exchange and the
correlation energies—are treated in the local density
approximation, which is based on the following
idea: these interactions are well known for an
electron gas of constant electronic density. To afirst
approximation one can assume that in an inhomo-
geneous gas the exchange and correlation energies
at each point take on the same values that they
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Figure 5. Electronic density profile at the surface of
jellium for two different bulk densities. The positive
background charge is indicated by the dashed line. For
clarity, the jellium edge was taken at different positions
for the two cases. Note: 1 au of distance is 0.529 A.

would have in a homogeneous gas with the same
density. While this approximation is simple, it has
the advantage that it fulfills a number of sum rules
which the exact expression must also obey. Most
importantly, it gives good results for the electronic
structures of surfaces, and only for complicated
interactions one has to resort to better mathematical
treatments like the generalized gradient approxima-
tion.

Explicit calculations for the electronic density
profile of jellium are based on the density functional
formalism developed by Hohenberg, Kohn, and
Sham.'” Both exact'® and good approximate treat-
ments!>18 are available. In the jellium model the
properties of a metal surface are completely deter-
mined by the bulk electronic density n, or, equiva-
lently, by the Wigner—Seitz radius rs, which is the
radius of a sphere containing one electron, i.e., n, =
3/4xrl. Figure 5 shows the electronic density profiles
for two different values of rs. The most important
feature is the relatively slow decay of the electronic
density at the surface, which occurs over a distance
of 1—2 A and is caused by the small electronic mass;
this effect is also known as the electronic spillover at
the surface. On the metal side of the surface the
density profile exhibits small oscillations, the Friedel
oscillations,'® which are more pronounced for lower
bulk densities.

The slow decay of the electronic density profile
entails a small but appreciable negative charge
density on the outside of the surface, which for an
uncharged surface is balanced by a positive excess
charge on the inside. This charge distribution gives
rise to a dipole moment and a surface dipole potential
of the order of a few volts—this is precisely the dipole
potential ym discussed in the preceding section. Since
the dipole moment is directed with its positive end
toward the bulk, an electron leaving the metal must
perform work against the dipole potential, which
therefore makes an important contribution to the
work function. The total work function is given by
® = —upt ey, where uy is the chemical potential of
the electrons in the bulk, which in the jellium model
is caused by the exchange and correlation interac-
tions of the electrons.

Obviously, jellium is a conceptually simple model
for a metal, even though explicit calculations within
this model are not easy. It does not account for
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Figure 6. Work function of selected polycrystalline sp

metals as a function of their electronic density; the line
indicates the prediction of the jellium model.

lattice structure and cannot describe d bands, which
are narrow and more localized than the sp bands. Its
application is therefore limited to polycrystalline sp
metals; modified versions have also been applied to
the sd metals Cu and Ag; they will be discussed in
the next subsection.

In the jellium model the properties of a metal are
solely determined by its electronic density. Figure
6 shows the theoretical curve for the work function
@ versus the bulk electronic density ny, together with
experimental data for polycrystalline sp metals. The
theory explains the increase of the work function with
the electronic density and gives the correct order of
magnitude. While large-scale quantum-chemical
calculations reproduce work functions with a greater
accuracy than the jellium model, they add little to
our understanding.

We note in passing that the Thomas—Fermi model
does not contain the effects of the electronic spillover.
This is one of the reasons why it fails to explain
phenomena such as the work functions of metals and
the double layer capacity.

For double layer theory the important quantity is
not the work function itself but the surface dipole
potential, which figures not only in eq 3 for the
potential of zero charge but also in the interfacial
capacity C. To see this we consider the inverse:

1 _ Wdw — Psor)
CT T (6)

Since the surface potential yv is a part of the
potential difference (¢m — ¢so)) We can define the
metal contribution to the inverse capacity as

1 m
C, o (")
so that formally
1 1 1
c=c ®)
c CM Csol

where the last term gives the variation of the
remainder of the potential, which is attributed to the
solution, with the surface charge density. It is
important to realize that the contribution of the metal
to the capacity is negative since the surface potential
decreases when the metal is positively charged. This
follows from Le Chatelier's principle: A positive
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Figure 7. Schematic diagram of the response of the
electronic density profile at the surface to an external field.
The upper curve is for a negatively charged surface, the
lower for a positive charge, and the curve in the middle is
for an unchared surface. The positive background charge
is indicated by the dashed line.
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Figure 8. Distribution of a small excess charge on the
surface of jellium with a bulk density of 8.9 au, arbitrary
units.

charge density increases the potential drop between
the metal and the solution, and the surface electrons
react so as to make it smaller. Thus, a positive
charge density on the metal surface gives rise to an
electric field directed outward from the surface, which
pulls the electrons back into the metal and thereby
decreases the surface dipole moment. Conversely, a
negative charge pulls the electrons toward the solu-
tion and increases the surface potential (see Figure
7). Since the metal capacity is negative it makes the
total capacity, which must be positive in any reason-
able model, larger. In essence: the metal surface
possesses a high electronic polarizability, which
increases the double layer capacity. Since the metal
capacity is independent of the concentrations of the
ions in the solution, it enters into the Helmholtz
capacity.

The metal contribution to the capacity can be
related to another quantity: the effective position of
the image plane. Since the electrons on the surface
of jellium react to the presence of an external field,
it does not behave like a perfect classical conductor.
A small test charge situated in front of a jellium
surface induces a surface charge of equal magnitude
and opposite sign. However, this small excess charge
is not located right on the metal surface; the major
part lies in front of the jellium edge, and there are
oscillations in the induced charge density (see Figure
8). As a consequence, the test charge experiences a
modified image law, in which the image plane is not
situated at the jellium edge, where the positive
background charge drops to zero, but a small distance
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Figure 9. Position of the effective image plane as a
function of the bulk electronic density.

Xim in front. A simple calculation shows that?°

Jx0p(x) dx 5 1
Xim = = _Eoﬁ = “Coc_ 9)
J6p(x) dx M

where dp(x) is the excess charge density on the metal.
Likewise, the capacity of a condenser composed of two
identical jellium plates is given by the classical
equation, but the effective plate separation is smaller
than the physical separation by an amount 2x;,. We
will see later that the same quantity plays also an
important role in second harmonic generation.

The value of the image plane position x;m, calcu-
lated for an uncharged metal surface, increases with
the electronic density (see Figure 9); this is to be
expected, since a higher electronic density should
entail a greater polarizability. This immediately
explains the tendency of the Helmholtz capacity to
increase with the electronic density of the metal,
which was observed in Figure 4. For a quantitative
comparison one requires an estimate for the contri-
bution Cs, of the solution to the inverse capacity. This
will be further discussed in section 9.

The interaction of the surface electrons with the
solution is a very active and controversial area of
research and will be considered in greater detail
below. From experiments in the vacuum it is known
that water is only weakly adsorbed on sd metals like
silver and copper, while it interacts more strongly
with the transition metals. There are no data for the
sp metals, but since water seems to interact with the
d electrons it is probably safe to assume that the
interaction of sp metals with water is weak. In the
simplest model that has been proposed?! that part
of the electronic density that spills over into the
solution is supposed to interact with the electronic
polarizability of the solvent molecule; therefore, the
region outside the jellium edge is assumed to have
the optical dielectric constant eq:, Which weakens the
electrostatic self-interaction of the electrons and
reduces the field. The optical constant is chosen
because the correlation lengths of the other two
modes that contribute to the static dielectric constant,
viz. the rotation and the distortion of the solvent
molecules, are longer than the distance over which
the electrons penetrate into the solvent. This simple
assumption leads to a significant decrease of the
effective image plane position (see Figure 9).

The position of the effective image plane depends
on the surface charge density of the surface (see
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Figure 10. Position of the effective image plane as a
function of the surface charge density for jellium in the
vacuum and for jellium in contact with a dielectric with
€opt = 1.88: (1) rs = 3 (vacuum); (2) rs = 2 (vacuum); (3) rs
= 3 (dielectric); (4) rs = 2 (dielectric).

Figure 10). Itis higher at negative charge densities,
where the electrons spill out further, than at positive
charges, where the electrons are withdrawn toward
the bulk. Thus, the response to an external charge
is nonlinear, which has important consequences on
the optical properties; this will be shown in the
section on second harmonic generation.

3.2. Jellium with Pseudopotentials

In the simple jellium model the metal is character-
ized by its electronic density only. While this is
sufficient to describe general trends, it does not
account for the effect of lattice structure and can
therefore not explain the differences between the
various surface planes of single crystals. In a popular
extension of this model the positive background
charge is replaced by a lattice of pseudopotentials (see
Figure 11). At each lattice site the electrons are
subjected to a potential that at short distances is
governed by the electronic repulsion from the core
and at large distances by the Coulomb force. Various
forms of pseudopotentials have been proposed. The
simplest is the Ashcroft form?2

0 ifr<r,
v ={ &
r

ifr=r, (10)

where z is the charge number of the ion and r. is the
radius of the pseudopotential. In this simple model
the electronic repulsion is assumed to cancel the
Coulomb attraction inside a sphere of radius r.. For
each metal the value of r¢ is chosen such that the
model reproduces the bulk properties of the metal
(e.g., cohesive energy, bulk modulus) well. Alterna-
tively, r. can be calculated from the condition that
the metal should be stable against changes in den-
sity. These prescriptions lead to slightly different
recommended values for r..

The surface plane of the metal is situated at a
distance do/2 in front of the first lattice plane (see
Figure 11), where do is the spacing of the lattice
planes in the direction perpendicular to the surface.
This choice ensures that for an uncharged metal
surface the ionic charge is balanced by the electronic
charge.

Chemical Reviews, 1996, Vol. 96, No. 8 3183

nx103 / a.u.

0 ; t ; } }
0.0 5.0 10.0 15.0 20.0 25.0 30.0
X/ a.u.

Figure 11. Electronic density profile for jellium with a

lattice of pseudopotentials. The positions of the ion cores
are indicated by arrows.

To keep the model one-dimensional the pseudopo-
tentials are often averaged in the direction parallel
to the metal surface. This procedure gives good
results for average properties like the metal work
function and the surface energy;® it is commonly
employed in calculations for electrochemical systems.

This extended jellium model makes it possible to
perform calculations for different surfaces of a single
crystal. In addition, Russier and Badiali?* have
shown that it can be used to describe the sd metals
copper and silver, if the mixing of the d states with
the sp band is taken into account by assigning a
formal valence of 1.5 to the Cu and Ag ion cores.
Their model gives good values for the work functions
of the principle surface planes of these two metals;
it has also been used for calculations of the electro-
chemical and optical properties of these surfaces with
some success (see below). Copper and silver are
among the most important electrode materials, so
simple models for these metals are particularly
welcome. Unfortunately, the relativistic effects in
gold cannot be incorporated into the jellium model
so easily, and an extension to transition metals seems
impossible.

With the introduction of pseudopotentials the
electronic density in the bulk is no longer uniform,
but shows maxima in the vicinity of the lattice sites
and minima in between the lattice planes (see Figure
11). Near the surface, the decay of the density is
similar to that observed in the simple jellium model,
but the decay length, and hence the surface dipole
moment, depends on the surface plane, so that the
work functions are also different. Of considerable
interest to electrochemists is the fact that the effec-
tive position of the image plane also varies. The
corresponding values for the principal planes of silver
have been calculated by Leiva.?® In these calcula-
tions the pseudopotentials were averaged in the
direction parallel to the metal surface. A proper
three-dimensional calculation for Ag(100) by Aers
and Inglesfield?® gave practically the same result (see
Table 1). Earlier calculations by Henderson and
Schmickler?® and by Amokrane and Badiali,?” both
based on the variational method, gave the same
ordering for the three principle planes, but somewhat
different values. A comparison with the experimen-
tal data for the Helmholtz capacity?® shows that this
model indeed predicts the correct ordering for these
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Table 1. Image Plane Position and Helmholtz
Capacity? for the Principle Planes of Silver Single
Crystals (a) from Ref 25 and (b) from Ref 28 (do
Denotes the Spacing of the Lattice Planes)

face Xim3 A XimPI A Xim+ do/2/A C/F m—2
Ag(111)  0.20 1.38 0.69
Ag(100) 050 0.51 1.54 0.90
Ag(110)  0.80 1.53 1.08

planes: both the position of the image plane and the
Helmholtz capacity increase in the sequence Ag(111)
> Ag(100) > Ag(110). However, the position of the
image plane varies considerably between the planes,
while the differences in the Helmholtz capacities are
relatively minor. Therefore, it has been suggested
that the position of the interface is not given by the
jellium edge, which lies at the face-dependent dis-
tance do/2 from the top lattice plane, but by the
radius of the metal atoms. In this case the quantity
that determines the metal capacity would be Xjm+ do/
2, which shows less variation (see Table 1). At the
time of writing this review, the position of the
interface is a matter of debate, and we will return to
this question below.

4. Electronic Effects Observed by Optical
Techniques

The classical electrochemical techniques measure
charge, potential, and current—and in the case of
liquid metals the surface tension as well. While the
results of such measurements cannot be understood
without considering the electronic structure of the
interface, they do not give detailed information about
it. Quantities like the interfacial capacity depend on
the distribution of all the particles, electrons, ions,
and solvent molecules. Hence, a quantitative inter-
pretation requires a detailed microscopic model, and
several different models may be compatible with the
data. Optical techniques that use light in the visible
or near-ultraviolet region probe the electronic re-
sponse to the incoming radiation directly and, hence,
may provide information that is lacking in the
classical measurements. We will provide examples
from two methods: uv—visible reflectance spectros-
copy and second harmonic generation.

4.1. Electroreflectance Spectroscopy

When light is incident on the interface between two
media the amount reflected depends on the dielectric
properties of the two adjoining phases. Agueous
solutions are transparent to light in the visible and
near-ultraviolet region of the spectrum; therefore, the
reflection coefficient of the interface between a metal
and an aqueous solution, measured as a function of
the photon energy, depends mainly on the optical
properties of the metal surface. In electroreflectance
spectroscopy monochromatic light is incident on an
electrode surface, and the reflected light is investi-
gated as a function of the frequency. To enhance the
sensitivity, difference spectra are recorded: the re-
flectivity R of the surface is first measured at a
chosen reference potential, then the potential is
stepped to some other value, and the differences AR
between the sets of values are taken. The resulting
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Figure 12. Projected band structure of Ag(100). The
energies are given with respect to the Fermi level.

spectra, usually plotted as AR/R vs the photon
energy, are known as electroreflectance spectra. The
use of this technique implies that the optical proper-
ties of a metal electrode vary with the potential or,
equivalently, the charge density of the metal surface.
Indeed, external fields penetrate a few angstroms
into the metal surface, and the induced charge
density extends over the same distance. Therefore,
the electric field on the surface, and the resulting
depletion or accumulation of electrons, affects the
optical properties.

The dielectric constant é(w) of a metal is a complex
guantity and generally contains contributions both
from free and from core electrons. Therefore, minor
changes in the reflectivity are difficult to interpret,
and the method is most useful to detect gross changes
in the optical constants. A case in point is the
occurence of surface states. Electronic transitions
from occupied bulk states to empty surface states
decrease the reflectivity at the associated photon
energy. Since surface states are localized in the
region that is sensitive to external fields, their
position relative to the metal Fermi level varies with
the applied potential. Hence, transitions to surface
states show up as positive or negative peaks in the
difference spectra that constitute the electroreflec-
tance signal.

The best studied systems are the surfaces of silver
single crystals. We consider the Ag(100) plane in
greater detail. Figure 12 shows the projected band
structure of this surface as calculated by Ho et al.3®
It exhibits two surface states, labeled A and B; the
latter lies close to the Fermi level, the former several
electron volts higher. Transitions from occupied bulk
states to these surface states show up as two sets of
peaks in the electroreflectance signal (see Figure
13).31 On the SCE (saturated calomel electrode) scale
the potential of zero charge of the Ag(100) electrode
lies at —0.9 V. Transitions into the higher state A
appear at potentials above the hydrogen evolution
reaction near the 3 eV region. With increasing
electrode potential they shift to higher values, and
above —0.6 V they move into the interband transition
and disappear. At about the same potential the
surface state B be has been raised above the Fermi
level, and transitions into B show up as characteristic
dips at lower energies in the electroreflectance spec-
trum. With increasing electrode potential this sur-
face state is also shifted to higher energies as
expected. Simultaneously, its width seems to in-
crease.
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Figure 13. Normal-incidence electroreflectance spectrum
of Ag(100) in 0.5 M NaF solution for various bias potentials;
E denotes the photon energy. Reprinted from Boeck, W.;
Kolb, D. M. Surf. Sci. 1982, 118, 613. Copyright 1982
Elsevier.
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Figure 14. Shift in transition energy with the electrode
potential for the two surface states on Ag(100); the dashed
line is a guide to the eye and has unit slope. Data taken
from ref 30.

These shifts in the position of the peaks with the
electrode potential merit closer attention. The sur-
face states are localized at a position about 1 A in
front of the first lattice plane and should therefore
experience an electrostatic potential intermediate
between those of the two bulk phases. Therefore, we
should expect them to shift with a certain fraction of
the electrode potential. A quantitative evaluation of
the spectrum shows that this is indeed the case for
surface state B (see Figure 14), while the spectra for
state A show a stronger shift at higher potentials,
where the shift of the energy is even greater than
that of the potential. The cause for this behavior is
not quite clear. It may be caused by the specific
adsorption of anions, which would repel electrons in
the surface states, thereby increasing their energy.
Alternatively, it could be caused by oscillations in the
local electrostatic potential due to the water structure
at the interface, an effect that will be discussed
further below.

The width of the surface states that appears in the
electroreflectance spectra is greater than predicted
by the calculations, which were performed for an
ideal surface in vacuum. The states are probably
broadened by the interaction with the water dipoles,
which exhibits thermal fluctuations.

With special experimental arrangements the inci-
dent light can excite surface plasmons. These are
charge density waves of the electron gas that propa-
gate parallel to the surface, while their amplitude
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Figure 15. Shift of the surface plasmon frequency with
electrode potential; data taken from ref 34.

decays exponentially toward the bulk. On a perfectly
flat electrode surface the excitation of surface plas-
mons is forbidden by momentum conservation. How-
ever, surface roughness or, preferentially, an ar-
rangement known as attenuated total reflectance,3233
in which the evanescent part of the light beam
couples to the plasmons, can provide the necessary
momentum transfer. This makes it possible to
measure the dispersion curves of the plasmons, and,
what is more important, their energy as a function
of the electrode potential. Figure 15 shows the
results for Ag(111) and Ag(100) surfaces.®* In both
cases the plasmon energy is practically constant
below the point of zero charge, but decreases notice-
ably at higher potentials. This phenomenon cannot
be explained in terms of the jellium model, since this
predicts a plasmon frequency that is practically
constant®—the changes in the electronic density at
the surface are too small to affect the surface plasmon
frequency. Possibly this effect is related to the
adsorption of anions.

4.2. Second Harmonic Generation

There are several techniques that depend on the
nonlinear optical properties of matter. The one that
is employed most often in electrochemistry is second
harmonic generation (SHG). The principle of this
method is quite simple: intense laser light of a
certain frequency v is incident on the metal—solution
interface, and the light that emerges at the frequency
2v is examined. There is an important selection
rule: within the electric dipole approximation, sub-
stances that are centrosymmetric do not generate
second harmonic (SH) light. Since electrolyte solu-
tions and practically all electrode materials possess
this symmetry, the observed signal comes mostly
from the interface, where the symmetry is broken.

There are various applications of second harmonic
generation in electrochemistry; they are reviewed in
several excellent articles;*$-8 here, we shall focus on
those aspects that give information on the electronic
properties of the surface.

The observed signal is usually strongest in the so-
called p-in p-out configuration, in which the incident
beam is polarized in the p-direction (i.e., its polariza-
tion vector has a component perpendicular to the
interface), and the signal with the same polarization
is observed. For a given system the intensity of the
signal depends on both the polar and the azimuthal
angle of incidence. The dependence on the polar
angle gives important information about the sym-
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metry of the surface but tells less about the electronic
response. Therefore, we will focus on the signal that
has been averaged over the polar angle. On flat
metal electrodes there are three sources that give rise
to frequency doubling, and the observed signal is
caused by their interference. Explicitly we can write

12" Olfa(v)E,? + gb(v)E,E, + hd()E-E]* (11)

where the symbols have the following meaning: E
is the electric field vector of the incident light, E, its
parallel, and E, its perpendicular component; f, g, h
are Fresnel coefficients that depend on the azimuthal
angle of incidence and on the dielectric constants of
the two phases that constitute the interface. The
important quantities are the three coefficients a, b,
and d. The first term describes the effect of currents
that are driven in the direction perpendicular to the
surface; the corresponding coefficient a(v) is generally
a complex quantity. The second term is caused by
currents parallel to the surface; for a perfectly flat
and structureless metal surface b(v) = —1. The third
term is actually a bulk contribution: the incident
light penetrates a short distance into the metal, and
the magnetic dipole term, which is not symmetry
forbidden, contributes to the signal with an ampli-
tude d(v) = 1. To our present knowledge aqueous
solutions make no direct contribution to the signal,
unless adsorbates with a strong nonlinear polariz-
ability are present. The presence of the solvent and
of adsorbates can, however, modify the electronic
properties of the metal surface, and thereby the SH
response.

The coefficient a(v), which characterizes the cur-
rents flowing perpendicular to the surface, is highly
sensitive to the electronic structure of the interface.
It is caused by the response of the surface electrons
to an external field, an effect that we have already
encountered when we discussed the contribution of
the metal to the interfacial capacity. As was il-
lustrated in Figure 7 an external field deforms the
electronic density profile at the surface. This re-
sponse has a strong nonlinear component, as is
evident from the dependence of the effective image
plane position on the surface charge density (see
Figure 10). In effect, the surface electrons are being
driven by the incident laser light, and the nonlinear
part of their response gives rise to light at the second
harmonic frequency. At low frequencies, in the
quasistatic limit, the corresponding amplitude a(v)
is independent of the frequency and determined by
the change of the effective image plane position with
the external field or, equivalently, with the surface
charge density ¢:21:3°

dx,,  d*,
2_d0 + o 90

a=2n, (12)

In essence, the effective position of the image plane
governs the linear electronic response of the interface,
and its rate of change with the field governs its
nonlinear response.

At higher laser frequencies the electronic response
is not in phase with the incident light and must be
calculated by the time-dependent density functional
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Figure 16. Real part of the coefficient a(v) for a Ag(111)
electrode as a function of the charge density. The error bars
are the values from Guyot-Sionnest et al.;*! the three points
are the values recalculated by Furtak et al.;* the full line
is the theoretical curve from ref 42; and the dashed line is
the theoretical curve from ref 41 scaled by a factor of 0.3
as explained in the text.

formalism. This was achieved by Liebsch and oth-
ers®%40 in a series of papers using jellium as a model
for the metal. While jellium does not account for
band-structure effects or for surface states (see
below), it represents the response of the surface
electrons to an external field well, as long as there
are no resonances.

The observed signal arises through the interference
of three terms (see eq 11). This makes it difficult to
extract the coefficients a(v), b(v), and d(v), which are
required for a detailed comparison between theory
and experiment, from the experimental data. In a
pioneering paper Guyot-Sionnest, Tadjeddine, and
Liebsch*' measured the SH response of a Ag(111)
electrode in a 0.1 M solution of KCIO, at various
angles of incident over a range of potentials. Assum-
ing the theoretical values of b(v) = —1 and d(v) = 1,
they obtained quasiexperimental values for a(v) by
a fitting procedure. Figure 16 shows the resulting
values as a function of the charge density on the
electrode; the wavelength of the employed laser beam
was 1064 nm, which is far from any interband
transition. The real part of the coefficent a is
negative over the range that is shown, and its
absolute value decreases from negative toward posi-
tive charge densities. The data presented in the
original paper were later examined by Furtak at al.;*
they pointed out that the fomula employed by Guyot-
Sionnnest et al. contains a small error; the correct
values for —Re(a) are somewhat higher. Theoretical
values, based on the jellium model and assuming one
free electron per silver atom, result in a curve with
the same overall trend, but the values for —Re(a) are
substantially too high. A three-dimensional quantum-
chemical calculation by Aers and Inglesfield?® gives
a value of a = —8.83 au for Ag(100) in the quasistatic
limit. This is about 0.3 times the value obtained from
the jellium model, which does not contain lattice
structure, and hence does not distinguish between
Ag(111) and Ag(100). If the theoretical curve is
scaled by this factor of 0.3—thus accounting for
structure in a phenomenological way—it passes closer
to the theoretical points.

In a later investigation Leiva and Schmickler*?
used jellium with pseudopotentials to account for the
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effect of the lattice structure. Their calculations,
performed for the quasistaic limit, predict significant
differences between the SH response of different
single crystal surfaces. For silver in contact with an
aqueous solution they employed the model of Russier
and Badiali** and used the optical dielectric constant
of water (see section 3.2). Their theoretical curve for
Ag(111), which is free of any adjustable parameter,
passes close to the experimental points, except for
the region of highly negative charge densities, where
it predicts too high values for —Re(a).

All variants of the jellium model that have been
used so far predict a strong increase of —Re(a) at
negative charge densities because the electrons spill
out further and their nonlinear response becomes
stronger. The experimental data do show an in-
crease, but it is not as strong as predicted by the
theory. The problem lies probably with the interac-
tion of the jellium tail with water, which becomes
stronger as the electrons penetrate further into the
solution but is not well represented in these concep-
tually simple models. In addition, there is some
indication that the coefficient b(v) may differ from
the theoretical value of —1.43

When SHG is performed at a fixed frequency of the
incident light one can obtain interesting information
about the electronic response at the surface, but not
about energy levels. In order to use SHG as a
spectroscopic probe one has to vary the wavelength
of the incident light. A major feature is expected
whenever the energy of an incident photon or of a
SH photon is in resonance with an electronic transi-
tion at the surface that is not forbidden by symmetry.
As an example we consider SHG from a Ag(111)
surface immersed in an aqueous solution. When a
p-polarized beam is incident on the surface, the
p-polarized output signal, plotted as a function of the
incident frequency, is rather featureless. In contrast,
the s-polarized SH signal shows a marked maximum
at a SH photon energy of about 3.82 eV. The height
of this maximum depends on the electrode potential
and is higher at negative charges; its position re-
mains unchanged (see Figure 17).

The nature of the corresponding electronic transi-
tion is still a matter of debate. The initial state is
probably a surface state that, in vacuum, is located
120 meV below the Fermi level at the I" in the surface
Brillouin zone. When the electrode potential is
varied the energy of the surface state will change (see
the discussion in section 4.1), and so will its oc-
cupancy. On the application of a negative potential
the state is pushed further below the Fermi level, its
occupation increases, and the resonance should be
enhanced, which is in line with the experimental
data. Since the resonance does not disappear over
the investigated range of potentials, its shift in
energy must be smaller than its width. Two different
candidates have been proposed for the final state:
Bradley et al.*® argue that the the transition occurs
to the unoccupied bulk band edge, while Furtak et
al.** assume that the final state is an image potential
state.

Performing electronic surface spectroscopy by SHG
is difficult and costly; therefore, this technique has
not been widely applied.
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Figure 17. Wavelength dependence of the normalized SH
intensity from Ag(111) in contact with a solution of 0.1
NaClO, for p-input and s-output polarization. The angle
of incidence was 30°; the electrode potential is given with
respect to Ag/AgCI; the pzc is near —0.7 V. Adapted from
ref 43 with permission.

5. Surface Reconstruction

At the surface of a solid metal the three-dimen-
sional translation symmetry of its lattice is abruptly
broken, and the surface atoms have fewer neighbors
than those in the bulk. Therefore, the surface atoms
may rearrange to form a surface that is denser than
that of the ideally terminated lattice; this process is
called reconstruction. However, this tendency is
opposed by the interaction of the surface atoms with
the second and third lattice plane, which favors the
ideal structure. In addition, the surface structure is
affected by the tendency of the surface electrons to
spread over a large volume in order to minimize their
kinetic energy. Whether surface reconstruction takes
place or not depends on the balance between these
forces. A number of metal surfaces, for example, the
(100) surfaces of Ir, Pt, and Au, are known to
reconstruct in vacuo. However, the adsorption of
atoms or molecules frequently lifts the reconstruc-
tion, particularly if they are electronegative (see, for
example, refs 45, 46, and 51), because a strong
metal—adsorbate interaction favors a more open
surface. In other instances, the adsorption of electron
donors may induce reconstruction.

Among the surfaces that reconstruct in vacuum are
the three principle planes of single-crystal gold
electrodes, and these have been the focus of several
electrochemical studies (for recent reviews see refs
47 and 48). We consider the Au(110) and Au(100)
surfaces in greater detail. A freshly prepared, flame-
annealed Au(110) surface shows a so-called 1 x 2 or
missing row reconstruction (see Figure 18) in vacuo,
in which every other row is missing.5%6 The adsorp-
tion of submonolayers of Cs and K, which donate
electrons to the substrate, induces a 1 x 3 recon-
struction on Au(110) surfaces,5%® in which the outer
atoms are shifted inward, so that the surface becomes
denser; this is indicated by the arrows in Figure 18.
Conversely, the adsorption of electronegative atoms
or molecules lifts the reconstruction, and the surface
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Figure 18. Surface structure of reconstructed Au(110)
surfaces (schematic): (a) 1 x 2 structure, (b) 1 x 3
structure; the arrows denote a displacement of the surface
atoms.

returns to the ideal 1 x 1 structure. Obviously, the
donation of electrons to the surface favors a recon-
struction, while a detraction of electrons lifts it.

In electrochemical systems the density of electrons
at the surface can be controlled directly through the
electrode potential without necessarily involving the
adsorption of other species. By surface X-ray scat-
tering, Ocko et al.>* observed the Au(110) 1 x 3
reconstructed surface in salt solutions at potentials
well below the potential of zero charge. A careful
analysis of their data revealed the relaxation of the
top surface layer discussed above. In acid solutions,
where one cannot perform experiments at high nega-
tive charges because of hydrogen evolution, this
group observed a poorly correlated structure inter-
mediate between 1 x 3and 1 x 2. An STM study of
acid solutions by Magnussen et al.5® revealed a 1 x
2 structure with a large density of defects at negative
potentials, while at potentials above 0.2 V vs SCE,
where the electrode is positively charged, the recon-
struction is removed. An earlier study by Gao et al.5®
had shown both 1 x 2 and 1 x 3 structures at
negative potentials. So the electrochemical investi-
gations show a transition series, (1 x 3) — (1 x 2) —
(1 x 1), as the surface charge increases from negative
toward positive values, which is in line with the
observations in the uhv.

These experimental findings can be explained in
terms of model calculations for the Ag(110)*? and
Au(110)% surfaces. Figure 19 shows calculated val-
ues for the surface energies of the ideal (1 x 1) and
the 1 x 2 and 1 x 3 surfaces as a function of the
charge per surface atom. (Actually, the curves in this
figure do not show the true surface energies, because
contributions from the counter charge have been
included; however, only the difference between the
curves is relevant for our argument.) The differences
between the three curves are quite small, so that a
relatively minor change of the system parameters
may induce or lift a reconstruction. For an un-
charged surface the 1 x 3 reconstruction has the
lowest energy. With increasing positive charge at
first the 1 x 2 and then the ideal 1 x 1 surfaces
become more favorable. These changes can be ex-
plained in terms of the tendency of the surface
electrons to occupy a large volume, thus decreasing
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Figure 19. Surface energy y of an ideal Au(110) surface

(solid line) and a surface with a 1 x 2 reconstruction.53 The
arrows indicate the intersection points of the curves.

Figure 20. Surface structure of the reconstructed (left)
and of the ideal (right) Au(100) surface. The upper draw-
ings show the surface structures of the STM images below.
On account of the misfit of the top layer with the bulk the
reconstructed surface shows a surface corrugation. Cour-
tesy of D. M. Kolb, Ulm.

their kinetic energy. The 1 x 3 surface is fairly open
and allows the electrons to extend into the region
between the top atom rows. To a lesser extent this
is also true of the 1 x 2 reconstructed surface.
Therefore, an increase of electronic density at the
surface favors the missing row reconstructions.

A similar, but somewhat simpler, situation occurs
at the Au(100) surface. A freshly prepared surface
shows a hexagonal surface reconstruction in vacuo.
When such a surface is immersed into an aqueous
electrolyte solution at a potential well below the
potential of zero charge, the reconstruction remains
intact and can be observed with a scanning tunneling
microscope (see Figure 20) and with X-ray scattering
techniques.®® When the potential is subsequently
scanned in the positive direction the reconstruction
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Figure 21. Current/potential curve (cyclic voltammogram)
of a Au(100) surface in 10 mM HCIO,. The electrode has
been prepared by flame annealing and was then immersed
into the solution at a potantial of —0.4 V vs SCE. Subse-
quently, the potential was scanned with a rate of 50 mV
s~1 in the positive direction. At a potential of 0.7 V the
direction of the sweep was reversed until the initial
potential was reached again. The direction of the scan is
indicated by an arrow.

is lifted, and the ideal surface structure appears. In
a current—potential scan this lifting is seen as a
current peak (see Figure 21). Since the potential of
zero charge of the reconstructed surface lies substan-
tially above that of the ideal surface® the electrode
is charged positive during the transition. The po-
tential at which this phase transition occurs depends
on the composition of the solution. For example, in
a solution of 0.1 M H; SO,, where the anions are only
weakly adsorbed, the reconstruction is lifted at a
potential of about 0.6 V vs SCE (saturated calomel
electrode); the addition of only 0.1 mM HCI shifts this
potential to a value of 0.4 V. Since the chloride ion
is strongly adsorbed, it seems that the specific
adsorption of anions favors the more open ideal
surface. This is in line with the observations in the
uhv mentioned above.

When the potential is scanned back in the negative
direction electronic charge is accumulated on the
metal surface, and the electrode surface undergoes
reconstruction at a potential well to the negative of
the pzc, as is evident from the current peak. How-
ever, this return to the original reconstructed surface
is slow because it is kinetically hindered; therefore,
it does not show up as a narrow current peak.

So the electrochemical interface offers the unique
capability to induce or lift surface reconstructions in
a number of systems simply by changing the elec-
trode potential. Though these surface phase transi-
tions are often accompanied by the specific adsorption
of ions, which may shift the transition potential to
some extent, the driving mechanism seems to be the
accumulation or depletion of electronic charge on the
electrode surface.

6. Resistance of Thin Electrodes

When the working electrode consists of a thin film
with a thickness in the micrometer range its resis-
tance parallel to the surface is sensitive to the
electronic structure of the surface. The essence of
this effect can be understood within a free electron
model, in which the bulk resistivity p, of a metal with
an electronic density ny is given by the equation®?
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e N,

Po = (13)

where k; is the Fermi wave vector and | is the mean
free path of the electrons. When the thickness of the
film is comparable to the mean free path, boundary
effects become important. In a simple model the
electrons impinge on the boundary where they are
reflected. This reflection can either be specular or
diffuse. If we denote by p, and p, the probability that
the electron undergoes specular reflection at the
upper or lower surface, respectively, the resistivity
p of a thin film can be written in the form®2

O exp(—«/u)].,, _
4kJ0 1 —p, p, exp(—2«/u) -

p = pp|1

u

-1

P+ (Py+ P~ 2P, Py) exp/u)] duf  (14)

where « is the ratio of the film thickness to the mean
free path of the electrons; the integral is performed
over all values of the cosine u of the angle of incidence
of the electron on the surface. Strictly speaking, the
specularity parameters of the surface depend on the
angle of incidence. Itis, however, instructive to take
them as constant and plot the relative resistivity p/pp
against this parameter. As one expects, the resis-
tance is the higher, the smaller the degree of specu-
larity, and the thinner the film (see Figure 22).
Conversely, if all electrons are specularly reflected
(pb = p1r = 1), the boundary does not affect the
resistivity.

The presence of adsorbates alters the electronic
properties of the electrode surface and hence affects
the resistivity. The interpretation is simplest in the
case of nonmetallic adsorbates such as the halide
ions. Essentially, such adsorbates serve as scattering
centers for the conduction electrons and decrease the
degree of specularity of the electrode surface.536* This
entails an increase of the resistance, which, over a
broad range of coverages, is proportional to the
amount adsorbed.

As an example we consider the adsorption of
chloride ions an a thin Au(111) electrode.’® When
the electrode potential is scanned from a negative
value, at which there is no specific adsorption, in the
positive direction, the adsorption of chloride ions
shows up as a peak in the current flowing through
the interface (see Figure 23a). Simultaneously, the
resistance of the electrode parallel to the surface
increases. When the potential is scanned back in the
negative direction, the desorption is observed as a
cathodic current peak and a simultaneous decrease
of the resistance, both occurring with a small hys-
teresis. The rate of change of the resistance should
be proportional to the change in the coverage and,
hence, to that part of the current that is due to the
adsorption. This is indeed the case (see Figure 23c).
In contrast to the current, the change in the resis-
tance is not affected by the charging of the double
layer, or by hydrogen evolution; therefore, it gives
precise information on the adsorption process.
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Figure 23. (a) Current and (b) resistance change during
the adsorption of chloride ions; (c) rate of change of the
resistance. The electrode was a Au(111l) film with a
thickness of 150 nm, the electrolyte was an aqueous
solution of 50 uM NaCl and 10 mM HCIOQOy; for clarity the
noise shown in the original data has been smoothed. The
scale for part b is indicated by the adjacent arrow. Adapted
from ref 65 by courtesy of Elsevier.

7. Tunneling of Electrons through the Electric
Double Layer

The development of the scanning tunneling micro-
scope (STM) for use in electrochemical cells was one
of the significant advances in experimental tech-
niques during the past decade. A fair number of
electrode surfaces, both pure and adsorbate-covered,
have been imaged with atomic resolution and pro-
vided a wealth of detailed microscopic information,
which is rivaled only by in situ surface X-ray scat-
tering techniques. However, here we are not con-
cerned with the imaging of the electrode surface, but

Schmickler

Figure 24. Electron tunneling through the double layer
in the STM configuration.

with the physical process on which it is based: the
tunneling of electrons through the double layer
between the electrode surface and the STM tip (see
Figure 24).

The presence of water has little effect on the STM
images of clean metal surfaces, so electrons can
tunnel through water and aqueous solutions. How-
ever, the variation of the STM current with the
distance between the metal surface and the tip is
markedly different. This dependence can be char-
acterized by the effective barrier height for electron
tunneling. Its definition is based on the simple
Gamov formula, according to which the probability
P that a particle of mass m tunnels through a
potential energy barrier of a constant height V, and
thickness | is given by:

P, = exp(— %m ') (15)

Of course, the barrier height for the tunneling of
electrons through water is not constant; in addition,
the absolute value of the separation | between the
tip and the substrate cannot be measured with the
required precision. However, the tunneling current
can measured as a function of the change of the
separation. This makes it convenient to define the
effective barrier height through

_ _h_z(d In i)2 (16)

b= 8m| d|

where i is the tunneling current.

We will first consider the situation in vacuo, which
is not complicated by the presence of water. At a
small bias potential AV between the tip and the
substrate the electrons will tunnel from the metal
with the higher Fermi level to that with the lower
one. At T = 0 the available energy range is e;AV; at
room temperature there is some thermal smearing
of the order kT, which is negligible for most purposes.
Since the work function of a metal gives the energy
required for an electron to leave the surface, we can
expect the effective barrier height to be of the order
of the average work function of the metal and,
therefore, in the range of 4—5 eV. Typical experi-
ments in vacuo show indeed an approximately expo-
nential dependence of the tunneling current on the
separation, which is in accord with eq 15, but due to
electronic interactions between the two metals the
effective barrier height is usually a little lower than
the work function.

The corresponding experiments in solutions are
difficult to perform. The high field between the tip
and the substrate attracts impurities as the tip scans
over the surface. So it is not surprising that experi-
mental values for the effective barrier height for
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electron tunneling through water show some scatter.
They seem to fall into two classes: low values in the
range of a few tenths of an electron volt (e.g., refs 66
and 67) and higher values of 1-2 eV.%8"70 |n any
case, the barrier height is substantially lower than
in vacuum.

These experimental findings provoked some theo-
retical work to explain the enhanced tunneling rate
in the presence of water. In an early paper Schmick-
ler and Henderson™ considered a model system
consisting of a flat metal electrode modeled as jel-
lium, a metal tip modeled as a jellium sphere, and
an intervening dielectric representing the water. The
tunneling electron interacts with the electronic po-
larizability of water, thereby reducing the barrier
height by about 1 eV. This mechanism is similar to
one observed in electron emission into water: the
work function for this process also lies about 1 eV
below the vacuum value.”? The resulting barrier
heights are of the order 2—3 eV and, thus, still
somewhat higher than the experimental values (see
Figure 25).

The same mechanism was further explored by
Sebastian and Doyen”® and by Rostkier-Edelstein et
al.,”* who in addition examined the effect of thermal
fluctuations on the tunneling current. The former
authors estimated that these fluctuations should
have little influence on the barrier height, the latter
concluded that they enhance the current.

Other groups have proposed that the electrons
tunnels via one or several intermediate states; this
mechanism would reduce the apparent barrier height
even further. This can be seen from the following
argument: The tunneling probability P¢ for an
exchange via an intermediate state is given by:

. P —P(—1)
tPp(m— i)+ Pi — t)

17)

where Py(m — i) is the tunneling probability from the
metal electrode to the intermediate state and
P:«(i — t) the tunneling probability from the latter to
the tip. Both probabilites are given by a Gamov-type
formula like eq 15. It is easy to see that P{ is
governed by the smaller of the two tunneling prob-
abilities Pi{(m — i) and P«(i — t) ; the most favorable
case occurs if the two are equal. When the tunneling
gap is changed by an amount Al the position of the
intermediate state will typically vary only by a
fraction of Al, or even not at all. Consequently, the
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Figure 26. Model for calculating tunneling probabilities.””

apparent barrier height, as defined by eq 16, will
seem much smaller than the actual height.

The problem with this argument is that, under the
usual operating conditions, there are no electronic
states in water that lie anywhere near the Fermi
level of the electrodes. Sass and Gimzewski’™ pro-
posed hydrated electrons as intermediate states.
However, the formation of hydrated electrons re-
quires an energy of activation of about 0.5 eV, and
they have a radius of about 10 A, so that they would
not even fit into the tunneling gap. This makes
tunneling via these states rather unlikely.

Halbritter et al.”® invoke dipole resonances as
intermediate states. They are supposed to arise from
the Coulomb interaction of the electron with the
dipole moment of water; we will return to this point
below. They explain their very low values for the
barrier height by tunneling through multiple inter-
mediate states. The basis of their argument is the
following: If the electron tunnels through one inter-
mediate state that always lies right at the center of
the barrier, the apparent barrier height is half the
real height; this can be seen from eq 17. Similarly,
if there are n states that are always at equal
distances through the barrier, the apparent barrier
height is lowered by a factor of (n + 1). In this way
they explain barrier heights of the order of a few
tenths of an electron volt as being caused by tunnel-
ing via five to six such states. Again, such a mech-
anism seems highly unlikely. Whatever the nature
of these dipole resonces may be, their energies must
lie substantially above the Fermi level. With a
tunnel gap of the order of a few angstroms, tunneling
via a series of such states must have a much lower
probability than direct tunneling.

The most elaborate models to date were devised
by Schmickler’” and by Mosyak, Nitzan, and Ko-
sloff.”® We describe our own work first. Both the
electrode and the tip are modeled as semiinfinite
jellium (see Figure 26). The gap between the two
jellium edges is filled with water molecules; its
thickness was adjusted to 9.6 A so that it contains
three layers of molecules. By use of the central force
model for water,”® molecular dynamics simulations
were performed. When these had proceeded for some
time the water configuration was recorded. The
interaction potential between the tunneling electron
and this water layer was calculated from the electron—
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Figure 27. Cross-section (y = 0) through the three-
dimensional potential energy surface generated by the
water layer. The coordinate system is shown in Figure 26.
For clarity the potential was cut off at 10 eV. The maxima
correspond to the positions of oxygen atoms, the minima
to hydrogen atoms.

water pseudopotential devised by Barnett et al.®° The
resulting three-dimensional potential energy surface
has pronounced maxima at the positions of the
oxygen atoms and shallow minima near the hydrogen
atoms—a cross-section through such a surface is
shown in Figure 27. To obtain the total interaction
potential the contribution from the jellium is added.

In this model the tunneling electrons experience a
strongly varying potential. The tunneling process
itself can be visualized as the scattering of an
incoming wavepacket by this potential. In order to
calculate the tunneling probability a window of 6 A
x 6 A perpendicular to the z direction (see Figure
26) was chosen at random, and cyclic boundary
conditions were imposed in the x and y directions. A
Fourier transformation in the x and y coordinates
results in a coupled system of one-dimensional
Schrédinger equations in the z coordinate, which was
solved numerically with the boundary conditions
appropriate for the scattering of a particle incident
from the left:

at z = —oo: incoming wave exp ikz +
reflected wave

at z = o outgoing wave

These calculations were repeated for a large number
of water configurations. A few typical results are
shown in Figure 28. For the 6 A x 6 A window the
tunneling probabilities are of the order of 1077—106
and fluctuate by about a factor of 10.

If the average tunneling probability it substituted
into the Gamov formula one obtains an effective
barrier height of about 2 eV. However, experimental
barrier heights are not obtained from the absolute
value of the tunneling probabilty but from a variation
of the tunneling gap. So, this theoretical value for
the barrier height does not quite correspond to the
quantity that is measured experimentally.

The work by Mosyak et al. is similar in many
respects. This group also calculates the tunneling
probability trough three layes of water sandwiched
between two electrodes. The water model, and the
interaction of the water with the electrode, are
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Figure 28. Tunneling probability for various configura-
tions of the interveneing water layer.””

somewhat different, but the same electron—water
pseudopotential is employed. The model for the
electrode is simpler: The space between the two
plates has an additional vacuum potential of 5 eV,
which drops to zero at the two metal surfaces. The
Fermi level of the electrode from which tunneling
occurs is taken as 3.5 eV. Thus, the gradual increase
of the jellium potential and its decrease due to the
interaction with the electronic polarizability are
absent in this model, but the average contribution
of the metal to the tunneling barrier is very similar
to that in our work, and the tunneling probabilities,
which were calculated by three different methods, lie
in the same range. The results are compared to one-
dimensional models, which are found to be inad-
equate. Given the complicated shape of the full
potential energy surface, with its maxima at the
oxygen atoms and the minima at the hydrogen atoms,
this is not surprising. The same group has recently
investigated the effect of the polarizability of water
on the tunneling probability.8* The water pseudo-
potential by Barnett et al. contains a term for the
interaction of the electron with the electronic polar-
izability of a single water molecule, but not the effect
of that polarizability on the water—water interaction.
If this effect is included in the model, the calculated
tunneling rate is enhanced by about 2 orders of
magnitude and gets closer to the experimental data.

In all of these works the electron is assumed to
tunnel through a static barrier. This is justified by
the different time scales for the tunneling of elec-
trons, which for this type of barrier lies in the range
of 107% s, and for the motion of water,”® which is
slower by at least 2 orders of magnitude.

While these three-dimensional models constitute
a major advance over the continuum models, much
work remains to be done. The dependence of the
current on the width of the tunneling gap has still
to be investigated. Also, the role of solvent fluctua-
tions is not yet clear. In principle, it is possible that
certain favorable solvent configurations exist that
give rise to a very large tunneling probability.
Though such fluctuations may be too rare to be
observed by sampling the configurations produced by
molecular dynamics, they could still make a large
contribution to the total current.

The potential energy surfaces constructed through

this approach also shed some light on the question
of intermediate states. Neither we nor Mosyak et al.
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observed any resonances that are close to the Fermi
level. However, the potential energy surface has
minima at the positions of the hydrogen atoms, which
increase the tunneling probability. Lindsey et al.®?
have proposed a model in which the electron tunnels
via a series of virtual intermediate states localized
on the oxygen atoms. In view of the shape of the
potential energy surfaces these states should rather
be localized on the hydrogen atoms.

8. Electronic Effects on Electron Transfer
Reactions

8.1. Outer-Sphere Electron Transfer Reactions

Electron transfer reactions are the simplest type
of electrochemical reactions and have been the sub-
ject of intensive investigations. The theory is well
developed for so-called outer-sphere electron transfer
reactions, in which bonds are neither formed nor
broken. In general, the rate constant for such a
reaction can be written in the form

—G'(¢)
kT

k=Aexp (18)

where G* is the Gibbs free energy of activation, and
A a preexponential factor. According to the theory
of Marcus® the Gibbs energy of activation G* depends
on the energy required to reorganize the reacting
complex and the surrounding solvation sphere and
on the Gibbs energy of the reaction, which in turn
depends on the electrode potential ¢. In contrast, the
preexponential factor A is assumed to be independent
of the electrode potential. More recent theories for
electrochemical electron transfer reactions predict a
relation of the same form (see, e.g., refs 84 and 85).

The strength of the electronic interaction between
the reactant and the metal must obviously affect the
reaction rate. If the interaction is strong, the reac-
tion is adiabatic, and the reaction rate is independent
of the electronic interaction (for an experimental
verification, see ref 86). At a first glance this may
seem surprising, but it can be readily explained by
the following consideration: The free energy surface
for the reaction is determined by the reorganization
of the reactants and of the solvation sphere and by
the reaction free energy, none of which depend on
the electronic overlap. If the electronic interaction
is strong, an electron transfer takes place every time
the system crosses the saddle point that separates
the reactant and the product region, and the rate is
independent of the electronic overlap. However, if
the electronic interaction is weak, there is only a
small probability that the electron will be exchanged
when the system is on the saddle point and that
probability depends on the electronic overlap. In the
latter case the reaction is nonadiabatic.

In the nonadiabatic case the preexponential factor
contains the electronic interaction between the re-
actant and the electrode®” and may be taken as
proportional to the electronic overlap S between the
two reactants. Usually, S is assumed to be indepen-
dent of the electrode potential. However, Kornyshev
et al.?® realized that on simple metals, for which
jellium is a good model, the metal wave functions
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Figure 29. Potential energy experienced by an electron
near the jellium edge (schematic). Full line: for an un-
charged surface. Dashed line: for a negatively charged
surface.

may vary considerably with the charge density on the
metal and, hence, with the electrode potential.

The effect is estimated to be greater for negatively
charged electrodes, so we consider this case in greater
detail. We have observed in section 3 that the
electronic density profile on a metal surface varies
with its charge density. For the electronic overlap
with a reactant the relevant quantity is not the total
electronic density but the decay of the wavefunction
of electrons with energies near the Fermi level. This
is determined by the one-electron potential, which,
within the jellium model, contains contributions from
the interaction with the positive background repre-
senting the ions cores, with the other electrons, and
with the external charge. Figure 29 shows this
potential for an uncharged and for a negatively
charged surface in vacuum. At the uncharged sur-
face the potential becomes constant at distances
larger than a few angstroms from the metal surface.
The difference in energy between the Fermi level and
the horizontal top of the barrier is the work function
of the metal. If the surface carries a negative charge
the potential decreases linearly at larger distance,
because the electrons are attracted by the positive
countercharge. At sufficiently high charges the bar-
rier becomes so thin that the electrons tunnel into
vacuum; this is the familiar phenomenon of field
emission. In the presence of an aqueous solution the
situation will be similar. However, the field at the
surface of a charged electrode will be screened by the
ions, and the potential will be constant at larger
distances. Nevertheless, the potential barrier is
much lower at negative charges, so that the decay of
the electronic wavefunction in the solution is signifi-
cantly reduced. Therefore, for nonadiabatic reac-
tions, the preexponential factor is expected to become
larger if the surface is charged negatively.

This scenario is supported by recent experimental
results for the reduction of Zn?* ions on a series of
indium and thallium amalgams.*8° The composition
of these amalgams, and hence their electronic prop-
erties, can be varied over a large range. The poten-
tial of zero charge varies continuously with the
composition, so that a given reaction can be investi-
gated for different charge densities at the same
electrode potential. The reduction of Zn?* occurs in
two steps:

zn*t +e —znt
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Zn" + e — Zn(Hg)

The first step is a simple electron transfer reaction;
its rate constant is small, so it should be nonadia-
batic. The second step is the formation of the
amalgam, and need not concern us here. Figure 30
shows the rate constant of the first step as a function
of the charge density for three different potentials.
In each case the rate constant follows the same
pattern: at first the rate increases a little as the
negative excess charge decreases, and then it drops
off continuously. The sharp rise at the beginning of
these curves is attributed to a change in the density
of states at the Fermi level of these amalgams, while
the decaying part is readily explained by the mech-
anism outlined above.

Whether this type of correlation holds for other
systems as well remains to be seen. The overall effect
is not large—a factor of 3—4 is not much in
kinetics—and there are very few systems where the
electronic properties can be varied so systematically.
Nevertheless, a verification of this effect would be
important, since it would shed light on the principles
of electron transfer theories.

8.2. Reaction of Hot Electrons

When a metal electrode donates an electron to a
reactant in the double layer, the energy of the
transferring electron is usually close to the Fermi
level. Thermal excitations are of the order of KT, so
the density of electrons with energies of 0.1 eV or
more above the Fermi level electrons is almost
negligible at ambient temperatures. On the other
hand, the transfer of electrons with energies below
the Fermi level generally requires a higher energy
of activation and, therefore, happens only rarely.
However, when the electrode is part of a tunnel
junction hot electrons can be produced, with energies
substantially above the Fermi level. When they
reach the surface they can react with suitable accep-
tors at potentials at which the exchange of thermal
electrons is negligible.

The principle of the method, which was developed
by Diesing et al.,*° is shown in Figure 31. The tunnel
junction consists of a metal film (Ag or Mg) covered
with an oxide layer about 3 nm thick, on which a thin
silver film (thickness about 15 nm) has been depos-
ited. The latter is in contact with an electrolyte
solution and serves as the working electrode. When
a suitable bias is applied between the metal and the
silver film electrons can tunnel through the thin
oxide film. The majority of the tunneling electrons
will have energies close to the Fermi level of the
metal source, since electrons with lower energies
experience a higher tunneling barrier. Most elec-
trons tunnel through without loss of energy and,
therefore, arrive in the silver film with a substantial
excess of energy above the Fermi level of the elec-
trode. Most of these hot electrons will lose energy
by electron—electron scattering and excite secondary
hot electrons in this process. A small fraction will
reach the electrode surface without loss of energy,
and others will relax down to the Fermi level. So,
there is a current of hot electrons impinging on the
electrode surface from the inside. They can be
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Figure 32. Cyclic voltammogram of a silver electrode
without (1) and with (2) hot electrons.®®

reflected back into the bulk, excite surface polaritons,
and emit photons or react with suitable acceptors in
the solution. The latter case is of interest here.
Curve 1 in Figure 32 shows a cyclic voltammogram
of a polycrystalline silver electrode in an acetate
buffer solution in the absence of hot electrons. The
curve is flat and featureless over a wide range; at
potentials below about —1.1 V vs SCE hydrogen
evolution sets in. If a bias of —2.1 V is applied to
the tunnel junction a tunneling current density of j;
= 14 mA cm=2 flows from the silver to the
aluminum—the electrons, of course, flow in the op-
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Figure 33. Current transients for the investigation of the
reaction of hot electrons. The generation of hot electrons
has been switched on at t = 0; the three curves correspond
to different times of switching off the tunneling current.

posite direction. A sizable fraction of the induced hot
electrons reaches the surface of the silver electrode
where it can react with protons to form hydrogen.
This is evident from curve 2 in Figure 32, where
hydrogen evolution sets in at higher potentials than
in the absence of hot electrons and is much enhanced.
However, this effect is only observed if the electrodes
are activated before the experiments by an oxida-
tion—reduction cycle in a chloride-containing solution
or by a similar procedure. The nature of this activa-
tion process, which is reminiscent of the activation
required for the surface enhanced Raman effect, is
not understood.

Further details about the hydrogen evolution reac-
tion with hot electrons can be observed by pulse
techniques. Figure 33 shows current transients for
an electrode potential of —0.8 V vs SCE, at which
under normal conditions no hydrogen evolution oc-
curs. When the tunneling voltage is switched on at
a time t = 0 the current rises quickly and reaches a
steady state value after about 107°> s. When the
tunneling voltage is switched off the current drops
abruptly, and a positive current transient is observed.
For the three cases shown in Figure 33 the shape of
this transient is independent of the duration of the
tunneling current pulse (note that the time axis in
Figure 33 is logarithmic). The total charge under
these transients is about 120 uC cm~2, which corre-
sponds to roughly half a monolayer of silver atoms
on a Ag(111) surface. A possible interpretation is the
following: during the hydrogen evolution reaction
adsorbed hydrogen occurs as an intermediate with a
steady state coverage corresponding to 120 uC cm~2,
When the tunneling current is switched off these
hydrogen atoms are reduced and give rise to the
observed transient. These findings are surprising,
because conventional wisdom holds—without much
evidence—that the interaction of hydrogen with silver
is too weak to form an adsorbed intermediate.

In any case, hot electrons offer a novel technique
to investigate electrochemical reactions and promise
to become an interesting field of study.

9. Models for the Electric Double Layer

So far we have focused our attention on those
double layer properties that are governed by the
metal electrons. A complete model of the interface
must describe the electrons, the solvent, the ions, and
the interactions of these constituents. This is a
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Figure 34. Distribution of the electrostatic potential for
an ensemble of hard sphere ions and dipoles in contact with
a hard wall situated at x = 0. The straight line is the
prediction of the Gouy—Chapman theory. Adapted from ref
91 with permission.

formidable task, and it is not surprising that is has
not been solved yet. However, a few attempts at such
complete models have been made. All of them stress
the important role played by the metal electrons, but
differ considerably in their treatment of the metal—
solvent interaction. We will consider a few of these
models in detail, discuss their differences, and point
out the problems at which, in our view, future
research should be directed.

9.1. The Jellium —Hard Sphere Electrolyte Model

Almost all the contemporary models use jellium,
with or without pseudopotentials, as the model for
the metal. The simplest molecular model for the
solution is that of a hard sphere electrolyte, in which
the solvent molecules are represented as hard spheres
with a permanent dipole moment at their center, and
the ions as charged hard spheres. The statistical
mechanics even of this simple model are quite
complicated. An approximate analytical solution has
been obtained for the case where such an ensemble
is in contact with a hard wall carrying a small excess
charged density; i.e., the charge must be so small that
linear response theory is applicable. It is based on
the mean spherical approximation, which itself is a
linearized theory. The mathematical details are
given in the original papers by Carnie and Chan®
and Blum and Henderson.®? We briefly review the
pertinent results.

Near the hard wall the density profile of the solvent
molecules exhibits oscillations, whose amplitude
decreases with the distance. They are caused by the
finite size of the hard spheres—the same effect can
be seen in any loose packing of spheres against a hard
wall. Since the solvent molecules carry a dipole
moment, these density oscillations give rise to con-
comitant oscillations in the electrostatic potential;
they are shown in Figure 34 for the case where the
solvent molecules and the ions have the same diam-
eter. These oscillations do not occur in the Gouy—
Chapman theory, which treats the ions as point
particles and the solvent as a dielectric continuum.
Therefore, an ensemble of hard sphere ions and
dipoles in contact with a charged hard wall has a
capacity which differs from the predictions of the
Gouy—Chapman theory. However, the Gouy—Chap-
man theory, just like the Debye-Huckel theory, is
exact in the limit of low ionic concentrations. There-
fore, these deviations become noticeable only at
higher concentrations.
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Within the mean spherical approximation the
inverse 1/C of the interfacial capacity can be ex-
panded in powers of the Debye inverse length « =
1/Lp. For the case where the anions and cations both
carry unit charge and have the same diameter s as
the solvent molecules, the first two terms are

c*1=4—”+@(1+€_1)+... (19)
€K € A

where ¢ is the bulk dielectric constant of the solvent
and 1 is given by the equation

22(1 + 1)* = 16¢ (20)

Since the calculations were performed for a small
excess charge density, eq 19 gives the capacity at the
pzc. As expected, the first term is the Gouy—
Chapman capacity. The second term is independent
of « and hence of the electrolyte concentration; thus,
it contributes to the Helmholtz capacity as defined
in section 2.2. Higher order terms, which are not
shown in eq 19, contain powers of « and become
important at high electrolyte concentrations; their
effect seems to have been observed on mercury.®®

It is the second term that is of interest to us here.
The parameter A characterizes the dielectric proper-
ties of the solvent near interfaces. For water, with ¢
=78, 1~ 2.65. Therefore, in this model, the diameter
of the ions has little effect on the Helmholtz capacity;
it is dominated by the properties of the solvent. This
is in line with experimental observations, which
indicate that the Helmholtz capacity is independent
of the nature of the ions, as long as they are not
specifically adsorbed.

The simplest way to combine the hard sphere
electrolyte with the jellium model is to identify the
jellium edge with the hard wall in the calculation
above.®*~97 If the only interaction of the jellium with
the solution is the electrostatic interaction between
the excess charges on the two sides on the interface,
then the inverse Helmholtz capacity is simply the
sum of two terms, the contributions of the metal and
of the solution:

X:
i=—ﬂ+@(l+
Cy € €

€ — 1) 1)

A

Again, this equation is only valid near the pzc. There
is a numerical problem with this and with similar
approaches: the inverse capacity appears as the
difference between two terms of a similar order of
magnitude. Nevertheless, if one takes the value for
the image plane position for jellium in contact with
a dielectric continuum with ¢ = 1.88 as discussed in
section 3.1, on obtains the dashed line in Figure 4a,
which passes not far from the experimental points.
Considering the fact that this is based on a model
without any adjustable parameters the agreement is
satisfactory.

A somewhat different approach was taken by
Schmickler and Henderson.%%" They did not include
the optical dielectric constant of water into their
calculations, but assumed that the metal electrons
are repelled by the water molecules. They took a
simple repulsive potential of the form V(z) = V,z for

Schmickler

z > 0 and fixed the value of the constant V,, such that
the theoretical plot of 1/Cy vs n passes near the
experimental points (see Figure 4a). The same
procedure, but with different values for the repulsive
constant V,, can be applied to other solvents (see
Figure 4b). Thus, this model has one free parameter,
which must be adjusted for each solvent, and de-
scribes the dependence of the Helmholtz capacity at
the pzc on the electronic density quantitatively. It
should be noted that these calculations are based on
an approximate variational solution for the electronic
density profile and not on an exact solution; however,
the approximation employed gives practically the
same values for the position of the image plane as
the exact procedure.®®

The simple jellium model does not work for metals
of the fourth and fifth column of the periodic table;
for these elements the inclusion of pseudopotentials
is essential. Using a simple variational solution for
the electronic density profile, Leiva and Schmickler®®
obtained reasonable results for the capacity of poly-
crystalline Pb, Sn, Bi, and Sb electrodes.

In any case, it seems clear that this kind of model,
without or with one adjustable parameter, correctly
predicts both the order of magnitude of the Helmholtz
capacity of simple metals and its dependence on the
electronic density.

Since this simple approach works quite well for
polycrystalline metals, it is natural to extend it to
single crystal surfaces. However, the effective posi-
tion of the image plane depends quite strongly on the
crystal face (see Table 1). So, if one simply follows
the method described above and identifies the jellium
edge with the hard wall in the hard sphere electrolyte
model, one obtains unreasonably large variations of
the Helmholtz capacity at different surfaces. The
best that can be said for this approach is that it gives
the correct ordering of the Helmholtz capacity for the
three principle crystal planes of silver.2® There may
be better choices for the position of the hard wall,
but so far this question is unresolved. We will return
to the problem of the separation between the metal
and the solvent when we consider different ap-
proaches below.

As noted above, the properties of the hard sphere
electrolyte could be calculated only for small excess
charges, so that the results for the interfacial capacity
are limited to the pzc. An extension of these results
to higher charge densities has not been achieved. In
order to explain the observed dependence of the
Helmholtz capacity on the charge density Schmickler
and Henderson have proposed a heuristic formula
based on the following premises:

(1) At the pzc this formula should reduce to the
known results.

(2) For very high fields the solvent dipoles should
exhibit complete dielectric saturation.

(3) The interpolation between the cases of low and
high fields should be effected by the Langevin func-
tion L(x) = coth x — 1/x, which gives the thermally
averaged orientation of a single free dipole in an
external field.

These requirements define a unique interpolating
formula for the contribution of the solvent to the
interfacial capacity. The explicit formula is a little
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Figure 35. The Helmholtz capacity as function of the
charge density. The dashed curve is for a bulk electronic
density of n, = 0.02 au, the full curve for n, = 0.01 au;
based on the work Schmickler and Henderson.%”

bit cumbersome,®” so we do not reproduce it here. A
combination of this heuristic formula with the jellium
model gives the type of capacity-charge characteris-
tics that is shown in Figure 35. It shows a pro-
nounced peak near the pzc; the decrease on both sides
is caused by the dielectric saturation of the solvent.
The overall shape of these theoretical curves is
similar to that observed on silver and similar metals.
This is pleasing, though such a heuristic approach
cannot provide more than a qualitative explanation.

9.2. Models with a Variable Distance between the
Metal and the Solution

As discussed above, the simple and natural as-
sumption that the jellium edge provides a hard wall
for the solution, seems to work well for polycrystalline
metals but runs into problems with single crystal
surfaces. Several groups have proposed that the
distance between the metal surface and the first layer
of solvent molecules should be calculated from the
molecular interactions and that it varies with the
surface charge density on the metal.101-103

Extensive model calculations based on this idea
have been performed by the groups of Halley'** and
of Badiali.'®> Both groups try to calculate the equi-
librium distance between jellium and a layer of
solvent molecules from interaction potentials and
obtain qualitatively similar results. We report on the
work of Badiali et al. in greater detail.

This group considers two interactions between
jellium and the solvent: an attractive van der Waals
potential, which is calculated as the dispersion force,
and a short-range repulsive interaction caused by the
electronic overlap between jellium and the water
molecules; the latter is calculated using a pseudopo-
tential approach. We will not go into the details of
these calculations—considering the complexity of the
problem it is obvious that they must involve rather
crude approximations, whose consequences are dif-
ficult to judge. Therefore, such calculations should
not be considered as quantitative. Still, they are
quite valuable since they point out where the dif-
ficulties lie and may serve as a basis for further
improvements.
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Figure 36. Variation of the distance of closest approach
with the charge density; based on ref 105.

Once the interaction potentials have been esti-
mated the equilibrium distance between the jellium
edge and the water molecules can be obtained either
by minimizing the free energy of the system or from
pressure balance. In an exact calculation, both
methods would give the same result, but this is not
necessarily so in approximate calculations.

Amokrane and Badiali have performed model
calculations for silver in contact with water using the
pressure balance method. Interestingly, the distance
d between the jellium edge and the center of the first
layer of water molecules varies quite strongly in their
model; this is in accord with the findings of Halley
et al.’® Figure 36 shows their results for an Ag(111)
surface using two different assumed values of the
water—jellium pseudopotential. Both curves have a
similar shape: a maximum at slightly negative
charge densities and a decrease at high positive or
negative charges. This decrease is caused by the
electrostatic pressure, which increases with the
absolute value of the electric field. That the maxi-
mum is not at the pzc, but shifted toward negative
charges, is due to the increased electronic spillover
in this region. The shift of the metal—solvent dis-
tance with the charge density is surprisingly large,
much larger than the change in the effective image
plane position (cf. Figure 10).

Since in this model the distance between the
jellium edge and the center of the solvent molecules
is not equal to the radius s of the solvent molecules,
and, in addition, changes with the charge density o,
the metal capacity must be defined differently.
Amokrane and Badiali define it as

1 1 ad
— ==|ld—s+ o— — X
C. e d—s 055 ~ Xim

(22)
The first two terms cancel if the jellium edge serves
as a hard wall; since they relate both to the metal
and the solvent, they might just as well have been
incorporated into the solvent capacity. The third
term vanishes if the distance d does not change, but
in this model it makes a major contribution to the
capacity.

To arrive at a complete double layer model,
Amokrane and Badiali proceed in a semiempirical
manner. Assuming that the contributions of the
metal and the solvent to the inverse capacity are
additive, they obtain the solvent capacity from ex-
perimental data for the Helmholtz capacity:
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1_1 1
ES_CH Cm (23)

As experimental data they take the Helmholtz ca-
pacities for Ag(111) in contact with an aqueous
solution of KF and for Ag(110) with a KPF¢ solution.
Using the calculated values for the metal capa-
city—since these are based on the simple jellium
model, they do not distinguish between different
crystal planes—they then obtain the solvent capacity.
Even though the experimental data for the two
systems differ considerably at positive charges, the
resulting semiempirical solvent capacity is almost the
same (see Figure 37). This is due to the fact that
the variation in the calculated metal capacity is much
larger than the variation in any experimental data
for the Helmholtz capacity. In fact, if the Helmholtz
capacity had a constant value anywhere in the range
of 20—100 uC cm™2, or oscillated within this range,
this procedure would still give essentially the same
solvent capacity.

Still, the resulting solvent capacities have a rea-
sonable shape: a maximum near the pzc, and a rapid,
almost symmetric decrease at high field strengths,
which is expected as a result of dielectric saturation.
By adjusting a few parameters, the whole curve can
be fitted to a model in which the solvent is repre-
sented by a monolayer of dipoles.

This kind of argument can be carried further:
assuming that the solvent capacity is the same on
all metal electrodes, one can obtain the capacities of
metals other than silver from the experimental
Helmholtz capacities by solving eq 23 for Cn.. The
resulting metal capacities show similar dependences
on the electrode charge density (see Figure 38). Once
these metal capacities have been calculated one can
turn to other solvents and calculate their capacities
using experimental data for the Helmholtz capacity.
In this way one obtains the capacities of all metals
and solvents for which the Helmholtz capacity is
known. Again, all solvents show essentially the same
behavior.

9.3. Discussion

The main breakthrough in our understanding of
the electric double layer came in the early 1980s,
when it transpired that the properties of this inter-
face are governed by the response of both the metal
electrons and the solution. The jellium model and
its extensions provide a convenient framework for
estimating the effect of external fields on the elec-
tronic distribution and the dipole potential of the
interface. Comparison with experimental data shows
that it gives both the correct order of magnitude for
this effect and also the correct trends, in particular
for the dependence on the bulk electron density and
on the electrode charge. Much work has also been
done on the structure of the solution at the interface.
This falls beyond the scope of this paper; therefore,
we have mentioned only the hard sphere electrolyte
model. Here, the main point is the existence of an
extended boundary layer, about 10—12 A thick, in
which the structure of the solvent differs from its
bulk structure. The progress beyond the mean
spherical approximation for the hard sphere electro-
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Figure 37. Solvent capacity for aqueous solutions accord-
ing to the phenomenological theory of Amokrane and
Badiali.’® The full lines are from experimental data for a
solution of KPFg, the dashed curves for NaF.
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Figure 38. Inverse of the metal capacity according to ref
105.

lyte has been slow. There is still not even an
approximate solution beyond the linear response to
a surface charge. There has, however, been some
progress in treating a model solvent and a single
ion1%6.107 by semianalytical techniques, and even more
work in this direction has been performed by com-
puter simulations (see, e.g., refs 108 and 109), but
only very recently have attempts been made to
combine such work with the jellium model in a
consistent manner.10

The position of the first layer of water molecules
with respect to the metal surface is still an open
guestion. To choose the jellium edge as the dividing
line, as was done by Schmickler and Henderson, is
simple and gives good results for polycrystalline and
liquid sp metal; it fails, however, for single crystals.
The approach by Amokrane and Badiali is, in prin-
ciple, preferable; but in our view is involves too many
uncertainties in the interaction potentials and the
approximations that have to be made, so that the
results are not reliable. The large change in the
metal—solvent distance that they and others obtain
is surprising, and does not seem to be supported by
experimental data.''!

The field of double layer modeling is very active,
and much that is written here may before long be
overcome by new developments. The most ambitious
work to date is that of Price and Halley,'*> who
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develop a variant of the Car—Parinello method to
calculate the structure of the metal—solution inter-
face. However, this work is still in its infancy, and
it is too early to decide whether it is even feasible.

10. Conclusion

It has been almost 50 years since Grahame pub-
lished his famous article on the electrochemical
double layer and the theory of electrocapillarity in
Chemical Reviews.!'® At that time, double layer
studies were rectricted to—highly precise—measure-
ments of the interfacial tension of mercury electrodes,
and the analysis was based on thermodynamics and
some electrostatics. Despite, or because of, these
limitations, Grahame's article is still fascinating to
read; it possesses a coherence, an attention to detail,
and a unifying view that is rare in modern scientific
literature. With the exception of a few passages on
the potential profile in the compact layer, his work
has withstood the test of time, and nowadays it is
being applied to solid single-crystal electrodes with
great success.'* In contrast, any modern review on
the double layer necessarily presents a patchwork.
We have a number of techniques that probe different
aspects of the interface. Theory can explain certain
effects and trends, in particular for sp and sd metals,
but a unifying model of the double layer, which would
encompass the electronic effects of the electrode, the
structure of the solution at the interface, and their
interactions, is still lacking. This makes the
reading—and, indeed, the writing—of a review like
this one less satisfactory. On the other hand, a
subject that is well desribed by a unifying theory
leaves little room for further research, so the present
state of affairs should be taken as a sign that double
layer studies are undergoing a rapid and healthy
development.
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